ООО"Кинематика"
198095, Санкт-Петербург, ул.Шкапина, д.32-34
Тел +7 (812) 252-1919 E-mail: diakin@narod.ru
Бесплатный звонок 7 (800) 555-81-68

Продукция                       Контакты                    Публикации                    Форум

Балансировка вентиляторов
(использована информация из ГОСТ 31350-2007 ВИБРАЦИЯ. ВЕНТИЛЯТОРЫ ПРОМЫШЛЕННЫЕ. ТРЕБОВАНИЯ К ПРОИЗВОДИМОЙ ВИБРАЦИИ И КАЧЕСТВУ БАЛАНСИРОВКИ)

Вибрация, производимая вентилятором, является одной из его важнейших технических характеристик. Она позволяет судить о качестве конструирования и изготовления изделия. Повышенная вибрация может свидетельствовать о неправильной установке вентилятора, ухудшении его технического состояния и т.п. По этой причине вибрацию вентилятора обычно измеряют в процессе приемо-сдаточных испытаний, при установке перед пуском в эксплуатацию, а также при выполнении программы мониторинга технического состояния машин. Данные о вибрации вентилятора используют также при проектировании его опоры и подсоединенных систем (воздухопроводов).
Обычно измерения вибрации проводят с открытыми всасывающим и нагнетательным отверстиями, однако необходимо иметь в виду, что вибрация вентилятора может существенно изменяться при изменении аэродинамики воздушного потока, частоты вращения и других характеристик.
В ГОСТ ИСО 10816-1-97, ГОСТ ИСО 10816-3-2002 и ГОСТ 31351-2007 установлены методы измерений и определены местоположения датчиков вибрации. Если измерения вибрации проводят для оценки ее воздействия на воздуховод или основание вентилятора, точки измерений выбирают соответствующим образом.
Измерения вибрации вентилятора могут быть дорогостоящими, и иногда их стоимость значительно превышает стоимость изготовления самого изделия. Поэтому какие-либо ограничения на значения отдельных дискретных составляющих вибрации или параметров вибрации в полосах частот следует вводить только в случаях, когда превышение этих значений свидетельствует о неисправности вентилятора. Число точек измерения вибрации также следует ограничить исходя из предполагаемого использования результатов измерений. Обычно для оценки вибрационного состояния вентилятора достаточно проводить измерения вибрации на его опорах.
Основание - это то, к чему крепится вентилятор и что составляет необходимую вентилятору опору. Массу и жесткость основания выбирают таким образом, чтобы препятствовать усилению передаваемой через него вибрации.

Опоры бывают двух типов:
  • податливая опора: Система опоры вентилятора, сконструированная таким образом, чтобы первая собственная частота опоры лежала значительно ниже рабочей частоты вращения вентилятора. При определении степени податливости опоры следует учитывать упругие вставки между вентилятором и опорной конструкцией. Податливость опоры обеспечивают, вывешивая вентилятор на пружинах или устанавливая опору на упругие элементы (пружины, резиновые изоляторы и т.д.). Частота собственных колебаний системы подвеска - вентилятор обычно составляет менее 25 % частоты, соответствующей минимальной скорости вращения испытуемого вентилятора.
  • жесткая опора: Система опоры вентилятора, сконструированная таким образом, чтобы первая собственная частота опоры лежала значительно выше рабочей частоты вращения. Жесткость основания вентилятора относительна. Ее необходимо рассматривать в сопоставлении с жесткостью подшипников машины. Отношение вибрации корпуса подшипника к вибрации основания представляет собой характеристику, определяющую влияние податливости основания. Основание можно считать жестким и достаточно массивным, если амплитуда вибрации основания (в любом направлении) вблизи лап или опорной рамы машины составляет менее 25 % максимального значения результата измерений вибрации, выполненных на ближайшей подшипниковой опоре (в любом направлении).
Поскольку масса и жесткость временного основания, на который устанавливают вентилятор при испытаниях в заводских условиях, может существенно отличаться от условий установки на месте эксплуатации , то в заводских условиях предельные значения применяют к узкополосной вибрации в области частоты вращения, а для испытаний на месте установки вентиляторов - к широкополосной вибрации, определяющей общее вибрационное состояние машины. Под местом эксплуатации понимается место окончательной установки вентилятора, для которого определены условия его работы.

Категории вентиляторов (BV-категории)
Вентиляторы делятся на категории в зависимости от характеристики назначения вентиляторов, классов точности их балансировки и рекомендуемых предельных значений параметров вибрации.
Конструкция вентилятора и его назначение являются критериями, позволяющими классифицировать вентиляторы многих типов по допустимым значениям дисбаланса и уровням вибрации (BV-категориям).
В таблице 1 представлены категории, к которым могут быть отнесены вентиляторы исходя из условий их применения с учетом допустимых значений дисбалансов и уровней вибрации. Категорию вентилятора определяет изготовитель.
Таблица 1 -Категории вентиляторов
Условия применения Примеры Потребляемая мощность, кВт BV-категория
Бытовые и офисные помещения Потолочные и чердачные вентиляторы, оконные кондиционеры ≤ 0,15 BV-1
> 0,15 BV-2
Здания и сельскохозяйственные помещения Вентиляторы для проветривания помещений и в системах кондиционирования воздуха; вентиляторы в серийном оборудовании ≤ 3,7 BV-2
>3,7 BV-3
Технологические процессы и производство энергии Вентиляторы в закрытых помещениях, шахтах, конвейерах, котлах, аэродинамических трубах, в системе газоочистки ≤ 300 BV-3
>300 см. ГОСТ ИСО 10816-3
Транспорт, в том числе морские суда Вентиляторы на локомотивах, грузовых и легковых автомобилях ≤ 15 BV-3
>15 BV-4
Туннели Вентиляторы для проветривания метро, туннелей, гаражей ≤ 75 BV-3
>75 BV-4
Любая BV-4
Нефтехимическое производство Вентиляторы для удаления опасных газов, а также используемые в других технологических процессах ≤ 37 BV-3
>37 BV-4
Производство компьютерных чипов Вентиляторы для создания чистых помещений Любая BV-5
Примечания
1 Настоящий стандарт рассматривает только вентиляторы мощностью менее 300 кВт. Оценка вибрации вентиляторов большей мощности - по ГОСТ ИСО 10816-3. Однако серийные стандартные электродвигатели могут иметь номинальную мощность до 355 кВт. Вентиляторы с такими электродвигателями следует принимать в соответствии с настоящим стандартом.
2 Таблица 1 не распространяется на легкие низкоскоростные вентиляторы большого диаметра (обычно от 2800 до 12500 мм) с осевым потоком, используемые в теплообменниках, башенных охладителях и т.п. Класс точности балансировки для таких вентиляторов должен быть G16, а категория вентиляторов - BV-3
В случае приобретения отдельных элементов ротора (колеса или крыльчатки) для их последующей установки на вентилятор следует руководствоваться классом точности балансировки данных элементов (см. таблицу 2), а в случае приобретения вентилятора в сборе помимо этого следует принимать во внимание результаты заводских испытаний на вибрацию (таблица 4) и вибрацию на месте эксплуатации (таблица 5). Обычно указанные характеристики согласованы между собой, поэтому выбор вентилятора можно осуществлять на основе его BV-категории.
Установленная в таблице 1 является типичной для нормального применения вентиляторов, однако в обоснованных случаях заказчик может запросить вентилятор другой BV-категории. Рекомендуется указывать BV-категорию вентилятора, класс точности балансировки и допустимые уровни вибрации в договоре на поставку оборудования.
Отдельное соглашение между заказчиком и изготовителем может быть заключено в отношении условий установки вентилятора, чтобы при заводских испытаниях вентилятора в сборе были учтены планируемые условия установки на месте эксплуатации. При отсутствии такого соглашения ограничения на тип основания (жесткое или податливое) для заводских испытаний не устанавливают.

Балансировка вентиляторов

Общие положения
Изготовитель вентиляторов несет ответственность за проведение балансировки вентиляторов согласно соответствующему нормативному документу. Настоящий стандарт основан на требованиях ГОСТ ИСО 1940-1. Балансировку проводят обычно на высокочувствительных, специально сконструированных балансировочных станках, позволяющих получить точную оценку остаточного дисбаланса.
Классы точности балансировки вентиляторов
Для колес вентиляторов применяют классы точности балансировки в соответствии с таблицей 2. Изготовитель вентиляторов может проводить балансировку сразу для нескольких элементов в сборе, куда кроме колеса могут входить вал, соединительная муфта, шкив и т.д. Помимо этого балансировки могут потребовать отдельные элементы сборки (см. [1] и [ 2] в отношении балансировки шкивов и муфт соответственно).
Таблица 2 - Классы точности балансировки
Категория вентилятора
Класс точности балансировки роторов (колес)
BV-1
G16
BV-2
G16
BV-3
G6,3
BV-4
G2,5
BV-5
G1,0
Примечание. В категорию вентиляторов BV-1 могут попасть вентиляторы
малых размеров массой менее 224 г, для которых трудно выдержать заданную
точность балансировки. В этом случае равномерность распределения масс
относительно оси вращения вентилятора должна быть обеспечена технологией
его изготовления.

Измерение вибрации вентиляторов
Требования к проведению измерений
Общие положения
На рисунках 1 - 4 показаны некоторые возможные точки и направления измерений на каждом подшипнике вентилятора. Значения, приведенные в таблице 4, относятся к измерениям в направлении, перпендикулярном к оси вращения. Число и местоположение точек измерений как для заводских испытаний, так и для измерений на месте эксплуатации определяют по усмотрению изготовителя вентиляторов или по соглашению с заказчиком. Рекомендуется проводить измерения на подшипниках вала колеса вентилятора (крыльчатки). Если это невозможно, датчик следует установить в таком месте, где обеспечена максимально короткая механическая связь между ним и подшипником. Датчик не следует закреплять на безопорных панелях, корпусе вентилятора, элементах ограждения или других местах, не имеющих прямой связи с подшипником (результаты таких измерений могут быть использованы, но не для оценки вибрационного состояния вентилятора, а для получения информации о вибрации, передаваемой к воздуховоду или на основание, - см. ГОСТ 31351 и ГОСТ ИСО 5348.
Рисунок 1. Расположение трехкоординатного датчика для горизонтально установленного осевого вентилятора
Рисунок 2. Расположение трехкоординатного датчика для радиального вентилятора одностороннего всасывания
Рисунок 3. Расположение трехкоординатного датчика для радиального вентилятора двустороннего всасывания
Рисунок 4. Расположение трехкоординатного датчика для вертикально установленного осевого вентилятора
Измерения в горизонтальном направлении следует проводить под прямым углом к оси вала. Измерения в вертикальном направлении должны быть проведены под прямым углом к горизонтальному направлению измерений и под прямым углом к валу вентилятора. Измерения в продольном направлении следует проводить в направлении, параллельном оси вала.
8.1.2. Измерения с использованием датчиков инерционного типа
Все значения вибрации, указанные в настоящем стандарте, относятся к измерениям, выполненным с помощью датчиков инерционного типа, сигнал которых воспроизводит движение корпуса подшипника.
Применяемые датчики могут быть либо акселерометрами, либо датчиками скорости. Особое внимание следует уделить правильному креплению датчиков: без зазоров по опорной площадке, качаний и резонансов. Размер и масса датчиков и системы крепления не должны быть чрезмерно большими, чтобы не вносить существенных изменений в измеренную вибрацию. Суммарная погрешность, обусловленная способом крепления датчика вибрации и калибровкой измерительного тракта, не должна превышать +/- 10% значения измеряемой величины.
8.1.3. Измерения с использованием датчиков бесконтактного типа
По соглашению между пользователем и изготовителем могут быть установлены требования к предельным значениям перемещения вала (см. ГОСТ ИСО 7919-1) внутри подшипников скольжения. Соответствующие измерения могут быть проведены с помощью датчиков бесконтактного типа.
В этом случае измерительная система определяет перемещение поверхности вала относительно корпуса подшипника. Очевидно, что допустимая амплитуда перемещений не должна превышать значения зазора в подшипнике. Значение внутреннего зазора зависит от размера и типа подшипника, нагрузки (радиальной или осевой), направления измерений (отдельные конструкции подшипников имеют отверстие эллиптического типа, для которого зазор в горизонтальном направлении больше, чем в вертикальном). Многообразие факторов, которые следует принимать во внимание, не позволяет установить единые предельные значения перемещения вала, однако некоторые рекомендации представлены в виде таблицы 3. Значения, приведенные в этой таблице, представляют собой процентное отношение к общему значению радиального зазора в подшипнике в каждом направлении.
Таблица 3 -Предельное относительное перемещение вала внутри подшипника
Вибрационное состояние вентилятора Максимальное рекомендуемое перемещение, проценты значения зазора1) (вдоль любой оси)
Пуск в эксплуатацию/Удовлетворительное состояние Менее 25 %
Предупреждение + 50 %
Останов + 70 %
1) Значения радиального и осевого зазоров для конкретного подшипника следует узнавать у его поставщика.
Приведенные значения даны с учетом «ложных» перемещений поверхности вала. Эти «ложные» перемещения появляются в результатах измерений вследствие того, что на эти результаты влияют помимо вибрации вала также его механические биения, если вал погнут или имеет некруглую форму. При использовании датчика бесконтактного типа вклад в результат измерений дадут также электрические биения, определяемые магнитными и электрическими свойствами материала вала в точке измерений. Считают, что при пуске вентилятора в эксплуатацию и его последующей нормальной работе размах суммы механических и электрических биений в точке измерений не должен превышать большего из двух значений: 0,0125 мм или 25 % измеренного значения перемещения. Биения определяют в процессе медленного проворачивания вала (на скорости от 25 до 400 мин-1), когда действие на ротор сил, вызванных дисбалансом, незначительно. Для того чтобы уложиться в установленный допуск по биениям, может потребоваться дополнительная обработка вала. Датчики бесконтактного типа, по возможности, следует закреплять непосредственно в корпусе подшипника.
Приведенные предельные значения применимы только для вентилятора, работающего в номинальном режиме. Если конструкция вентилятора предусматривает его работу от привода с переменной скоростью вращения, то на других скоростях возможны более высокие уровни вибрации вследствие неизбежного влияния резонансов.
Если в вентиляторе предусмотрена возможность изменения положения лопастей относительно потока воздуха у входного отверстия, приведенные значения следует применять для условий работы с максимально открытыми лопастями. Следует учесть, что срыв воздушного потока, особенно заметный при больших углах раскрытия лопасти относительно входного воздушного потока, может приводить к повышенным уровням вибрации.

Система опоры вентилятора
Вибрационное состояние вентиляторов после их установки определяют с учетом жесткости опоры. Опору считают жесткой, если первая собственная частота системы «вентилятор - опора» превышает скорость вращения. Обычно при установке на бетонные фундаменты больших размеров опору можно считать жесткой, а при установке на виброизоляторы - податливой. Стальная рама, на которую часто устанавливают вентиляторы, может относиться к любому из двух указанных типов опоры. В случае сомнений в отношении типа опоры вентилятора можно выполнить расчеты или провести испытания для определения первой собственной частоты системы. В некоторых случаях опору вентилятора следует рассматривать как жесткую в одном направлении и податливую в другом.
Пределы допустимой вибрации вентиляторов при испытаниях в заводских условиях
Предельные уровни вибрации, приведенные в таблице 4, применяют к вентиляторам в сборе. Они относятся к измерениям виброскорости в узкой полосе частот на опорах подшипников для частоты вращения, применяемой при испытаниях в заводских условиях.
Таблица 4 -Предельные значения вибрации при испытаниях в заводских условиях
Категория вентилятора Предельное с.к.з. виброскорости, мм/с
Жесткая опора Податливая опора
BV-1 9,0 11,2
BV-2 3,5 5,6
BV-3 2,8 3,5
BV-4 1,8 2,8
BV-5 1,4 1,8
Примечания
1 В приложении А указаны правила преобразования единиц виброскорости в единицы виброперемещения или виброускорения для вибрации в узкой полосе частот.
2 Значения в настоящей таблице относятся к номинальной нагрузке и номинальной частоте вращения вентилятора, работающего в режиме с открытыми лопатками входного направляющего аппарата. Предельные значения для других условий нагружения должны быть согласованы между изготовителем и заказчиком, но рекомендуется, чтобы они не превышали табличных значений более чем в 1,6 раза.


Пределы допустимой вибрации вентиляторов при испытаниях на месте эксплуатации
Вибрация любого вентилятора на месте эксплуатации зависит не только от качества его балансировки. Влияние будут оказывать, например, факторы, связанные с установкой, такие как масса и жесткость системы опоры. Поэтому изготовитель вентиляторов, если только это не оговорено контрактом, не несет ответственности за уровень вибрации вентилятора на месте его эксплуатации.
В таблице 5 приведены рекомендуемые предельные значения (в единицах виброскорости для широкополосной вибрации на корпусах подшипников) при нормальной работе вентиляторов различных категорий.


Таблица 5 - Предельные значения вибрации на месте эксплуатации
Вибрационное состояние вентилятора Категория вентилятора Предельное с.к.з. виброскорости, мм/с
Жесткая опора Податливая опора
Пуск в эксплуатацию BV-1 10 11,2
BV-2 5,6 9,0
BV-3 4,5 6,3
BV-4 2,8 4,5
BV-5 1,8 2,8
Предупреждение BV-1 10,6 14,0
BV-2 9,0 14,0
BV-3 7,1 11,8
BV-4 4,5 7,1
BV-5 4,0 5,6
Останов BV-1 __1) __1)
BV-2 __1) __1)
BV-3 9,0 12,5
BV-4 7,1 11,2
BV-5 5,6 7,1
1) Уровень останова для вентиляторов категорий BV-1 и BV-2 устанавливают на основе долговременного анализа результатов измерений вибрации.
Вибрация новых принимаемых в эксплуатацию вентиляторов не должна превышать уровень «пуск в эксплуатацию». По мере эксплуатации вентилятора следует ожидать повышения уровня его вибрации вследствие процессов износа и кумулятивного эффекта влияющих факторов. Такое повышение вибрации является, в общем, закономерным и не должно вызывать тревоги, пока не достигнет уровня «предупреждение».
По достижении вибрацией уровня «предупреждение» необходимо исследовать причины повышения вибрации и определить меры по ее снижению. Работа вентилятора в таком состоянии должна быть под постоянным наблюдением и ограничена временем, требуемым для определения мер по устранению причин повышенной вибрации.
Если уровень вибрации достигает уровня «останов», меры по устранению причин повышенной вибрации должны быть приняты незамедлительно, в противном случае вентилятор должен быть остановлен. Задержка с приведением уровня вибрации к допустимому уровню может повлечь за собой повреждение подшипников, появление трещин в роторе и в местах сварки корпуса вентилятора и, в конечном итоге, разрушение вентилятора.
При оценке вибрационного состояния вентилятора следует контролировать изменения уровня вибрации со временем. Внезапное изменение уровня вибрации свидетельствует о необходимости немедленного осмотра вентилятора и принятия мер по его техническому обслуживанию. При контроле изменения вибрации не следует принимать во внимание переходные процессы, вызванные, например, заменой смазки или процедурами технического обслуживания.

Влияние процедуры сборки

Помимо колес в состав вентиляторов входят другие вращающиеся элементы, которые могут оказать влияние на уровень вибрации вентилятора: приводные шкивы, ремни, соединительные муфты, роторы электродвигателей или других устройств привода. Если условия заказа требуют поставку вентилятора без устройства привода, то изготовителю из практических соображений может быть нецелесообразно проводить испытания всей сборки для определения уровней вибрации. В таком случае даже при условии выполнения изготовителем балансировки колеса вентилятора нет уверенности в том, что работа вентилятора в сборе будет плавной до тех пор, пока вал вентилятора не будет соединен с приводом и вся машина не будет испытана на вибрацию при пуске вентилятора в эксплуатацию.
Обычно после сборки требуется проведение дополнительной балансировки, чтобы уменьшить уровень вибрации до приемлемого уровня. Для всех новых вентиляторов категорий BV-3, BV-4 и BV-5 перед их принятием в эксплуатацию рекомендуется провести измерения вибрации для машины в сборе. Это позволит определить базовую линию и наметить дальнейшие меры по техническому обслуживанию.
Изготовители вентиляторов не несут ответственности за влияние на вибрацию частей привода, установленных после проведения испытаний в заводских условиях.

Средства измерений и калибровка

Средства измерений
Используемые средства измерений и балансировочные станки должны быть поверены и удовлетворять требованиям поставленной задачи. Период между поверками определяется рекомендациями изготовителя средств измерений (испытаний). Состояние средств измерений должно обеспечивать их нормальную работу в течение всего периода испытаний.
Персонал, работающий со средствами измерений, должен обладать достаточными навыками и опытом, позволяющими выявлять возможные неисправности и ухудшения качества работы средств измерений.
Калибровка
Все средства измерений должны быть калиброваны в соответствии со стандартами. Сложность процедуры калибровки может варьироваться от простого физического осмотра до калибровки всей системы в целом. Корректирующие массы, используемые для определения остаточного дисбаланса по ГОСТ ИСО 1940-1, могут быть применены также для калибровки средств измерений.

Документация

Балансировка
По запросу, если это предусмотрено условиями договора, заказчику может быть предоставлен акт об испытаниях вентилятора на качество балансировки, в который рекомендуется включать следующую информацию:
- наименование изготовителя балансировочного станка, номер модели;
- вид установки ротора: межопорный или консольный;
- метод балансировки: статическая или динамическая;
- масса вращающихся частей ротора в сборе;
- остаточный дисбаланс в каждой плоскости коррекции;
- допустимый остаточный дисбаланс в каждой плоскости коррекции;
- класс точности балансировки;
- критерии приемки: принят/отбракован;
- сертификат балансировки (при необходимости).
Вибрация
По запросу, если это предусмотрено условиями договора, заказчику может быть предоставлен акт об испытаниях на вибрацию вентилятора, в который рекомендуется включать следующую информацию:
- использованные средства измерений;
- способ крепления датчика вибрации;
- эксплуатационные параметры вентилятора (расход воздуха, давление, мощность);
- частота вращения вентилятора;
- тип опоры: жесткая или податливая;
- измеряемая вибрация:
1) положение датчиков вибрации и измерительных осей,
2) единицы измерений и опорные уровни вибрации,
3) диапазон частот измерений (узкая или широкая полоса частот);
- допустимый уровень (уровни) вибрации;
- измеренный уровень (уровни) вибрации;
- критерии приемки: принят/отбракован;
сертификат об уровнях вибрации (при необходимости).
Протокол испытаний
На рисунке 5 показан пример протокола испытаний вентилятора на вибрацию и качество балансировки. Форма протокола испытаний может иметь другой вид при условии, что в него включена информация в соответствии с 11.1 и (или) 11.2.



Рис 5 Примерная форма протокола испытаний на вибрацию и качество балансировки

СПОСОБЫ БАЛАНСИРОВКИ ВЕНТИЛЯТОРОВ НА БАЛАНСИРОВОЧНОМ СТАНКЕ
B.1. Вентилятор с прямым приводом
B.1.1. Общие положения
Колесо вентилятора, которое при сборке устанавливают непосредственно на вал электродвигателя, должно быть уравновешено в соответствии с тем же правилом учета влияния шпонки, что и для вала электродвигателя.
Электродвигатели прошедших лет выпуска могли быть уравновешены в процессе балансировки с полной шпонкой. В настоящее время вал электродвигателя уравновешивают с полушпонкой, как это предписано ГОСТ 31322, и маркируют меткой H (см. ГОСТ 31322).
B.1.2. Электродвигатели, уравновешенные с полной шпонкой
Колесо вентилятора, насаживаемое на вал электродвигателя, который уравновешен с использованием полной шпонки, следует уравновешивать без шпонки на оправке конической формы.
B.1.3. Электродвигатели, уравновешенные с полушпонкой
Для колеса вентилятора, насаживаемого на вал электродвигателя, который был уравновешен с использованием полушпонки, возможны следующие варианты:
a) если колесо имеет стальную втулку, нарезать в ней шпоночную канавку после проведения процедуры балансировки;
b) проводить балансировку на оправке конической формы с вставленной в шпоночную канавку полушпонкой;
c) проводить балансировку на оправке, имеющей одну или несколько шпоночных канавок (см. B.3), с использованием полных шпонок.
B.2. Вентиляторы с приводом от другого вала
Где возможно, все вращающиеся элементы, включая вал вентилятора и шкив, следует уравновешивать как единое целое. Если это нецелесообразно с практической точки зрения, балансировку следует проводить на оправке (см. B.3) с использованием того же правила учета шпонки, что и для вала.
B.3. Оправка
Оправка, на которую устанавливают колесо вентилятора при балансировке, должна удовлетворять следующим требованиям:
a) быть по возможности более легкой;
b) быть в уравновешенном состоянии, что обеспечивают соответствующим техническим обслуживанием и регулярным контролем;
c) предпочтительно иметь коническую форму, что позволит уменьшить погрешности, связанные с эксцентриситетом, который появляется как результат допусков на размеры отверстия втулки колеса и оправки. Если оправка имеет коническую форму, то при расчетах дисбаланса следует учитывать истинное положение плоскостей коррекции относительно подшипников.
При необходимости использовать оправку цилиндрической формы, в ней должна быть прорезана шпоночная канавка, в которую вставлена полная шпонка для передачи вращающего момента от оправки к колесу вентилятора.
Другим вариантом является прорезание двух шпоночных канавок на противоположных концах диаметра вала, что позволит использовать метод балансировки, называемый реверсным. Этот метод заключается в следующем. Сначала измеряют дисбаланс колеса, вставив в одну шпоночную канавку полную шпонку, а в другую - полушпонку. Затем колесо поворачивают на 180° относительно оправки и вновь измеряют его дисбаланс. Разность в полученных двух значениях дисбаланса обусловлена остаточным дисбалансом оправки и универсального соединения привода. Для получения истинного значения дисбаланса ротора надо взять половину разности результатов этих двух измерений.


ИСТОЧНИКИ ВИБРАЦИИ

Внутри вентилятора действует много источников вибрации, и вибрация на некоторых частотах может быть прямо сопоставлена с конкретными особенностями конструкции машины. В настоящем приложении рассмотрены только самые общие источники вибрации, наблюдаемые для большинства типов вентиляторов. Общим правилом является то, что любые ослабления в креплении системы опоры вызывают ухудшение вибрационного состояния вентилятора.

C.2. Дисбаланс
Это основной источник вибрации вентиляторов; он характеризуется наличием составляющей вибрации на частоте вращения (первой гармонике). Причина дисбаланса заключена в том, что ось вращающейся массы расположена с эксцентриситетом или под углом к оси вращения. Это может быть вызвано неравномерным распределением вращающихся масс, суммой допусков на размеры отверстия втулки вентилятора и вала, изгибом вала или сочетанием этих факторов. Вибрация, обусловленная дисбалансом, действует преимущественно в радиальном направлении.
Временный изгиб вала может быть следствием неравномерного нагрева механической - вследствие трения вращающихся и неподвижных элементов конструкции - или электрической (см. C.6) природы. Постоянный изгиб может образоваться в результате изменений свойств материала или вследствие несоосности вала и колеса вентилятора при раздельном креплении вентилятора и электродвигателя (см. C.3).
В процессе эксплуатации дисбаланс колеса может возрастать из-за осаждения на него частиц воздуха. При работе в агрессивной среде появление дисбаланса может быть связано с неравномерной эрозией или коррозией колеса.
Дисбаланс может быть устранен дополнительной балансировкой в соответствующих плоскостях, но перед проведением процедуры балансировки необходимо установить источники появления дисбаланса, устранить их и проверить стабильность вибрационного состояния машины.
C.3. Несоосность
Данный дефект может иметь место в случае, когда валы электродвигателя и вентилятора соединены через ременную передачу или с помощью гибкой муфты. Несоосность иногда можно обнаружить по характерным частотным составляющим вибрации, как правило, это первая и вторая гармоники оборотной частоты . В случае параллельного смещения осей валов вибрация проявляется преимущественно в радиальном направлении, а при пересечении осей под углом доминирующей может стать вибрация в продольном направлении.
Если валы соединены под углом друг к другу и при этом использованы жесткие соединительные муфты, то в машине начинают действовать знакопеременные силы, вызывающие повышенный износ валов и муфт. Этот эффект может быть существенно ослаблен использованием гибких соединений.
C.4. Аэродинамическое возбуждение
Возбуждение вибрации может быть обусловлено взаимодействием колеса вентилятора со стационарными элементами конструкции, такими как направляющие лопасти, электродвигатель или подшипниковые опоры, неверно выбранными значениями зазоров или неправильно спроектированными конструкциями воздухозабора и воздухоотвода. Характерной особенностью данных источников является возникновение периодической вибрации, связанной с частотой вращения колеса, на фоне случайных флуктуаций взаимодействия лопастей колеса с воздухом. Вибрацию можно наблюдать на гармониках лопастной частоты, которая представляет собой произведение частоты вращения колеса на число лопастей колеса.
Аэродинамическая нестабильность потока, обусловленная его срывом с поверхности лопасти и последующим вихреобразованием, вызывает появление широкополосной вибрации, форма спектра которой изменяется в зависимости от нагрузки вентилятора.
Аэродинамический шум характерен тем, что он не связан с частотой вращения колеса и может проявляться на субгармониках частоты вращения (т.е. на частотах ниже оборотной). При этом наблюдается значительная вибрация корпуса вентилятора и воздуховодов.
Если аэродинамическая система вентилятора плохо согласована с характеристиками последнего, в нем могут наблюдаться резкие толчки. Такие толчки хорошо различимы на слух и передаются в виде импульсов на систему опоры вентилятора.
Если упомянутые выше причины приводят к вибрации лопастей, ее природу можно исследовать, устанавливая датчики в разные места конструкции.
C.5. Завихрения в слое масла
Завихрения, которые могут возникать в слое смазки подшипников скольжения, наблюдают на характерной частоте немного ниже оборотной частоты ротора, если только вентилятор не работает на скорости, превышающей первую критическую. В последнем случае нестабильность масляного клина будет наблюдаться на первой критической скорости, и иногда этот эффект называют резонансным вихрем.
C.6. Источники электрической природы
Неравномерный нагрев ротора электродвигателя может привести к его прогибу, который обусловит появление дисбаланса (проявляющегося на первой гармонике).
В случае асинхронного двигателя появление составляющей на частоте, равной частоте вращения, умноженной на число пластин ротора, означает наличие дефектов, связанных с пластинами статора, и наоборот, составляющие на частоте вращения, умноженной на число пластин ротора, свидетельствуют о дефектах, связанных с пластинами ротора.
Для многих составляющих вибрации электрической природы характерно их немедленное исчезновение с отключением электропитания.
C.7. Возмущения от ременного привода
В общем случае существует два вида проблем, связанных с ременным приводом, когда на работу этого привода оказывают влияние сторонние дефекты и когда дефекты имеют место на самом ремне.
В первом случае, хотя ремень и вибрирует, это является следствием вынуждающих сил со стороны других источников, поэтому замена ремня не принесет желаемых результатов. Обычными источниками таких сил являются дисбаланс в системе привода, эксцентриситет шкивов, несоосность и ослабление механических соединений. Таким образом, прежде чем менять ремни, необходимо провести анализ вибрации для выявления источника возбуждения.
Если ремни реагируют на внешние вынуждающие силы, частота их вибрации будет, скорее всего, той же самой, что и частота возмущения. При этом частоту возмущения можно определить с помощью стробоскопической лампы, настраивая ее таким образом, чтобы в свете лампы ремень казался неподвижным.
В случае многоременного привода неодинаковое натяжение ремней может привести к тому, что передаваемая на них вибрация будет усилена многократно.
Случаи, когда источниками вибрации являются сами ремни, связаны с их физическими дефектами: трещинами, местами уплотнения и размягчения, грязью на поверхности ремня, вырванным материалом с его поверхности и т.д. Для клиновидных ремней изменения их ширины будут приводить к тому, что ремень будет ездить вверх-вниз по дорожке шкива, создавая тем самым вибрацию вследствие изменения своего натяжения.
Если источником вибрации является сам ремень, частотами, на которых эта вибрация обнаруживается, обычно будут гармоники частоты вращения ремня. В конкретном случае частота возбуждения будет зависеть от природы дефекта, а также от числа шкивов, включая натяжные.
В некоторых случаях амплитуда вибрации может быть нестабильна. Особенно это справедливо для многоременной передачи.

Дефекты механического и электрического происхождения являются источниками вибрации, которая впоследствии преобразуется в воздушный шум. Шум механического происхождения может быть связан с дисбалансом вентилятора или двигателя, шумом подшипников, центровкой осей, колебаниями стенок воздуховода и панелей корпуса, вибрацией амортизаторов, лопастей, заслонок, труб и опор, а также передачей механических колебаний по конструкции. Шум электрического происхождения связан с различными формами преобразования электрической энергии: 1) магнитные силы определяются плотностью потока магнитной индукции, числом и формой полюсов и геометрией воздушного зазора; 2) случайный электрический шум определяется щетками, дуговыми разрядами, электрическими искрами и т.д.
Шум аэродинамического происхождения может быть связан с образованием вихрей, пульсациями давления, сопротивлением воздуха и т.д. и иметь как широкополосную, так и узкополосную природу. Широкополосный шум могут вызывать: а) лопасти, заслонки и др. преграды на пути воздушного потока; b) вращения вентилятора в целом, ремней, прорезей и т.д.; с) внезапные изменения направления воздушного потока или поперечного сечения воздуховода, разность скоростей в потоке, разделение потока вследствие граничных эффектов, эффектов сжатия потока и т.д. Узкополосный шум могут вызывать: а) резонансы (эффект органных труб, вибрации струн, панелей, элементов конструкции и т.д.); b) эффекты образования вихрей на острых краях (возбуждение столба воздуха); с) вращения (эффект сирены, прорези, отверстия, пазы на вращающихся частях).
Удары, создаваемые при контакте различных механических элементов конструкции, которые производят шум, подобный производимому при ударе молотком, раскате грома, резонансе пустого ящика и т.д. На слух могут восприниматься соударения зубьев шестерен, а также хлопки дефектных ремней. Ударные импульсы могут быть столь быстротечны, что для того чтобы отличить периодические ударные импульсы от переходных процессов, необходимо использовать специальную высокоскоростную записывающую аппаратуру. Та область, где производится много ударных импульсов, наложение их пиков создает эффект постоянного гудения


Зависимость вибрации от типа опоры вентилятора

Правильный выбор конструкции опоры или основания вентилятора необходим для его плавной, безотказной работы. Для обеспечения соосности вращающихся узлов при установке вентилятора, электродвигателя и других устройств привода используют рамную конструкцию из строительной стали или основание из железобетона. Иногда попытка сэкономить при строительстве опоры приводит к невозможности поддерживать требуемую соосность узлов машины. Это особенно неприемлемо в случае, когда вибрация чувствительна к изменению степени соосности, в частности для машин, состоящих из отдельных частей, соединенных вместе металлическими креплениями.
Фундамент, на который положено основание, также может оказывать влияние на вибрацию вентилятора и двигателя. Если собственная частота колебаний фундамента близка к частоте вращения вентилятора или двигателя, фундамент в процессе работы вентилятора будет резонировать. Это можно обнаружить, если проводить измерения вибрации на некотором расстоянии друг от друга по всему фундаменту, окружающему полу и на опорах вентилятора. Часто в условиях резонанса вертикальная составляющая вибрации существенно превышает горизонтальную. Вибрацию можно погасить, выполнив конструкцию фундамента более жесткой или увеличив его массу. Даже при условии устранения дисбаланса и несоосности соединений, позволяющего уменьшить вынуждающие силы, предпосылки возникновения значительной вибрации могут существовать. Это означает, что если вентилятор вместе со своей опорой близки к резонансу, для достижения приемлемых значений вибрации будут необходимы более точная балансировка и более точное центрирование валов, чем это требуется обычно для данных машин. Такое положение нежелательно, и его следует избегать, увеличивая массу и (или) жесткость конструкции опоры или бетонного блока.


Руководство по контролю вибрационного состояния и диагностике

Основной принцип контроля вибрационного состояния машин (далее - состояние) заключается в наблюдении за результатами правильно спланированных измерений, чтобы иметь возможность выявить тенденцию к нарастанию уровня вибрации и рассмотреть ее с точки зрения появления возможных проблем. Контроль применим в тех ситуациях, когда повреждения развиваются медленно и ухудшение состояния механизма проявляется через физические признаки, доступные измерению.
Вибрацию вентиляторов, являющуюся следствием развития физических дефектов, можно контролировать через некоторые заданные промежутки времени, а при обнаружении повышения уровня вибрации увеличить частоту наблюдений и провести детальный анализ состояния. При этом причины изменения вибрации могут быть обнаружены на основе анализа частотного состава вибрации, что позволяет определить перечень необходимых мер и запланировать их выполнение задолго до того, как повреждение достигнет серьезных размеров. Обычно принятие мер считают необходимым, когда уровень вибрации повышается по сравнению с базовым в 1,6 раза или на 4 дБ.
Программа контроля состояния состоит из нескольких этапов, которые кратко могут быть сформулированы следующим образом:
a) идентифицировать состояние вентилятора и определить базовый уровень вибрации (он, возможно, будет отличаться от уровня, полученного в ходе заводских испытаний, вследствие разных способов установки и т.д.);
b) выбрать точки измерений вибрации;
c) определить периодичность наблюдений (измерений);
d) установить порядок регистрации информации;
e) определить критерии оценки вибрационного состояния вентилятора, предельные значения для абсолютной вибрации и для изменений вибрации, обобщить опыт эксплуатации машин аналогичного типа.
Поскольку на скоростях, не приближающихся к критической, вентиляторы работают обычно без каких-либо проблем, уровень вибрации не должен существенно изменяться при небольшом изменении скорости или нагрузки, но важно учесть, что в случае, когда вентилятор работает с переменной частотой вращения, установленные предельные уровни вибрации относятся к максимальной рабочей частоте вращения. Если в рамках установленного допуска на вибрацию максимальная частота вращения не может быть достигнута, это может служить признаком наличия какой-либо серьезной проблемы и нуждаться в специальном исследовании.
Некоторые рекомендации по диагностированию, приведенные в приложении С, основаны на опыте эксплуатации вентиляторов и предназначены для последовательного применения при анализе причины повышенной вибрации.
Для качественной оценки вибрации конкретного вентилятора и определения руководства для последующих действий могут быть использованы границы зон вибрационного состояния, установленные ГОСТ ИСО 10816-1.
Следует ожидать, что для новых вентиляторов уровни их вибрации будут лежать ниже предельных значений, приведенных в таблице 3. Эти значения соответствуют границе зоны А вибрационного состояния по ГОСТ ИСО 10816-1. Рекомендуемые значения для уровней предупреждения и останова установлены исходя из анализа информации, собранной по вентиляторам конкретных видов.

СВЕДЕНИЯ О СООТВЕТСТВИИ
ССЫЛОЧНЫХ МЕЖДУНАРОДНЫХ СТАНДАРТОВ МЕЖГОСУДАРСТВЕННЫМ СТАНДАРТАМ,
ИСПОЛЬЗОВАННЫМ В НАСТОЯЩЕМ СТАНДАРТЕ В КАЧЕСТВЕ НОРМАТИВНЫХ ССЫЛОК
Таблица H.1
Обозначение
ссылочного
межгосударственного
стандарта
Обозначение и наименование ссылочного
международного стандарта и условное обозначение
степени его соответствия ссылочному
межгосударственному стандарту
ГОСТ ИСО 1940-1-2007
ИСО 1940-1:1986. Вибрация. Требования к качеству
балансировки жестких роторов. Часть 1. Определение
допустимого дисбаланса (IDT)
ГОСТ ИСО 5348-2002
ИСО 5348:1999. Вибрация и удар. Механическое
крепление акселерометров (IDT)
ГОСТ ИСО 7919-1-2002
ИСО 7919-1:1996. Вибрация машин без возвратно-
поступательного движения. Измерения на вращающихся
валах и критерии оценки. Часть 1. Общее
руководство (IDT)
ГОСТ ИСО 10816-1-97
ИСО 10816-1:1995. Вибрация. Оценка состояния
машин по измерениям вибрации на невращающихся
частях. Часть 1. Общее руководство (IDT)
ГОСТ ИСО 10816-3-2002
ИСО 10816-3:1998. Вибрация. Оценка состояния
машин по измерениям вибрации на невращающихся
частях. Часть 3. Промышленные машины номинальной
мощностью более 15 кВт и номинальной скоростью
-1
от 120 до 15000 мин на месте эксплуатации (IDT)
ГОСТ 10921-90
ИСО 5801:1997. Вентиляторы промышленные.
Определение рабочих характеристик с использованием
стандартных воздуховодов (NEQ)
ГОСТ 19534-74
ИСО 1925:2001. Вибрация. Балансировка. Словарь
(NEQ)
ГОСТ 24346-80
ИСО 2041:1990. Вибрация и удар. Словарь (NEQ)
ГОСТ 31322-2006
(ИСО 8821:1989)
ИСО 8821:1989. Вибрация. Балансировка. Соглашение
об учете влияния шпонки при балансировке валов
и насаживаемых деталей (MOD)
ГОСТ 31351-2007
(ИСО 14695:2003)
ИСО 14695:2003. Вентиляторы промышленные. Методы
измерений вибрации (MOD)
Примечание. В настоящей таблице использованы следующие условные
обозначения степени соответствия стандартов:
- IDT - идентичные стандарты;

Использованы материалы с сайтов http://tehnorma.ru/gosttext/gost/gost_4383.htm http://snipov.net


Недорогие приборы для динамической балансировки вентиляторов Балком-1 (49500 руб)
   


© ООО «Кинематика», 2011-2017 г.
198095, Санкт-Петербург, ул.Шкапина, д.32-34
Тел +7 (812) 252-1919 E-mail: diakin@narod.ru


Яндекс.Метрика